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Abstract We study the quantum dynamics of conversion of composite bosons into
fermionic fragment species with increasing densities of bound fermion pairs using the
open quantum system approach. The Hilbert space of N-state-functions is decomposed
into a composite boson subspace and an orthogonal fragment subspace of quasi-free
fermions that enlarges as the composite boson constituents deviate from ideal boson
commutation relations. The tunneling dynamics of coupled composite bosons states in
confined systems is examined, and the appearance of exceptional points under experi-
mentally testable conditions (densities, lattice temperatures) is highlighted. The theory
is extended to examine the energy transfer between macroscopically coherent sys-
tems such as multichromophoric macromolecules in photosynthetic light harvesting
complexes.

Keywords Composite bosons · Hilbert space · Light harvesting complexes

1 Introduction

Composite quasi-particle systems such as excitons (coherent superpositions of elec-
trons and holes) display phase-space filling effects when the mean separation between
particles becomes comparable to the exciton Bohr radius. This arises due to the
Pauli blocking [1,2] of scattered fermionic particles which constitute “cobosons”
[3,4] or composite bosons. The difference between composite bosons and elementary
bosons can be seen for instance, in the invariance of Pauli scattering during exchanges
between specific fermionic species that can be correlated via several routes [4]. Such
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interactions are non-existent in a collection of ideal bosons with negligible overlap,
spin and internal structure. Unlike the conventional commutation relations satisfied
by ideal boson operators of bound fermion pairs, composite bosons systems obey a
series of commutation relations [5,6] that are reflective of the underlying fermionic
structure of the constituent particles. The excitonic polariton [7,8] is one such example
of a composite boson system in which the influence of the composite-particle effect
on many-body physics can be studied. When the dimensions of quantum dot excitonic
polaritons are decreased, anti-bunching features appear, with a crossover from bosonic
to fermionic nature characterized by a shift from the Rabi doublet to a Mollow triplet
in the optical spectrum [8]. In other systems, the deviations from the ideal boson fea-
tures may influence the magneto-association of atoms into molecules via Feshbach
resonances [9,10].

Recently, several studies have focussed on the links between the composite particle
nature of bosons and entanglement effects [11–13] using the principles of quantum
information theory. It was shown that effects of the Pauli exclusion principle diminish
when entanglement features dominates [11,12,14–16]. Measures such as purity P
[12,17] have been proposed to quantify the strength of entanglement between the
constituent fermions. While the exclusion principle imposes the requirement that an
antisymmetric state vector be assigned to an identical group of fermions, the rules
becomes less stringent when the fermions become entangled and lose their fermion
identity. The exact association between entanglement and the exclusion principle is
not well understood as the latter implicates some degree of nonlocal interactions for
fermionic particles of the same state to display anti-bunching behavior. Beyond a
critical dimension, the tendency of similar fermions to “avoid” each other is lost,
with the problem very much dependent on the system parameters such as dimensions
and thermodynamic factors. Currently, very few details exists on the nature of the
quantum correlation (whether classical or non-classical) that underpins the action of
the exclusion principle in composite boson systems.

In this work, we examine the conversion of composite bosons to orthogonal fermi-
onic fragment states due to dominance of Pauli exclusion at increasing densities of
the correlated boson system. The specific case of excitons is considered, and the ionic
conversion of e − h → X is examined as an equivalent of the well known exci-
tonic Mott transition where the excitonic system ionizes due to space filling effects
[18,19] at high densities, resulting in a free electron-hole plasma X . The situation
in which the bound exciton state vanishes and merges into a continuum of scattered
states can also be considered as the Mott transition. In this case, the scattered states
may exist as quasi-free fermions. In a recent study [20], the Mott effect was noted
to occur when the excitonic Bohr radius became nearly the same as the screening
length, that is, the bound electron-hole pair states co-existed with the high-density
electron-hole liquid phase. While the interplay of several many-body effects are
responsible for the Mott transition, questions remain as to whether the conversion
from the excitonic state to fermionic plasma-like phase proceeds in a continuous man-
ner.

Different timescales can be seen to operate in the composite boson-fermion sys-
tem: the highly entangled elementary bosons which operate at fast times compared to
the scattering times specific to fermionic species. To this end, the composite bosons
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can be analyzed via the open quantum system approach based on the system-plus-
reservoir model. The total Hilbert space is divided into subsystems according to dif-
ferent timescales and/or states which exist in distinct phases. The Fock-Hilbert space
of state vectors associated with a system of identical bosons (fermions) is spanned
by only symmetric (antisymmetric) functions. While the completeness theorem [21]
applies to many-particle state vectors in distinct Fock-Hilbert subspaces of antisym-
metric and symmetric particle functions, fluctuation in the number of interacting par-
ticles may occur when energy exchanges occur between subspaces. In this work, we
consider that the Hilbert space of state-functions is decomposed into a composite
boson subspace and an orthogonal fragment subspace of quasi-free fermions. The lat-
ter subspace enlarges as the composite boson constituents deviate from ideal boson
commutation relations due to enhanced fermionic features. The quantum master equa-
tion approach of the Lindblad form [22,23] may be used to investigate composite
boson systems, however evaluation of the density matrix of high dimensional systems
presents insurmountable challenges. Stochastic formalisms such as the quantum tra-
jectory method [24,25] involving non-Hermitian terms which cause quantum jumps,
coupled with the Feshbach projection-operator partitioning technique [26] may pro-
vide a viable route to study the dynamics of composite bosons. In this study, we employ
the Green’s function formalism [27,28] to examine the dynamics of composite boson
systems.

A coupled system of boson condensate and fragment states with variable fermionic
character has implications in the field of quantum information and processing. Com-
posite bosons can be studied in the context of quantum tunneling of macroscopically
coherent systems such as the double-well Bose-Einstein condensate. The latter is a
well-known lattice system capable of variable controls [29,30], exhibiting a range of
quantum effects such as self-trapping, Josephson oscillations [31], and entanglement
[32,33]. Here we report on oscillations that occur in the coupled composite boson
system, with testable predictions based on the quantum dot excitonic systems. The
results obtained for coupled composite boson systems is extended to analyze mul-
tichromophoric macromolecules (MCMMs) in photosynthetic light harvesting com-
plexes, which are systems of great interest [34–38] due to appearance of long-lived
quantum coherences even at physiological temperatures.

This paper is organized as follows. In Sect. 2 we provide a brief review of cobosons
or composite boson states and their Schmidt decomposition properties, along with
description of the Schmidt number and purity measures. The occurrence of the fermi-
onic fragment state which lies orthogonal to the composite boson is highlighted. In
Sect. 3, a description of other alternative measures of deviations from ideal boson
characteristics is provided, and numerical estimates of the bosonic deviation measure
in quantum dots of varying size and fermion pair number is provided. In Sect. 4, we
introduce the open quantum system model and master equation for exciton-fermion
system. The importance of Non-Markovian dynamics due to the fermionic background
is briefly described in this Section. In Sect. 5, the tensor structure of the many particle
Fock-Hilbert space is examined for the N excitonic bosons, and the tunneling dynam-
ics of composite bosons states is numerically examined using the decay branching
ratio in Sect. 6, with discussion of the appearance of exceptional points under experi-
mentally testable conditions. In Sect. 7, we examine the application of results obtained
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in Sect. 6 to pigment protein complexes in light-harvesting systems, and present our
conclusions in Sect. 8.

2 Schmidt decomposition of cobosons or composite boson states

Following earlier formalisms of cobosons comprising two fermions [11,12,39], the
coboson creation operator of distinguishable fermions in the Schmidt decomposition
involving a single index is written as

B† =
J∑

j=1

√
λ j a†

j b
†
j , (1)

where λ j are the Schmidt coefficients. a†
j and b†

j are different fermion creation oper-
ators in the Schmidt mode j , and J denotes the number of Schmidt coefficients [40].
The distribution of λ j is linked to a measure of entanglement, which is provided via
the Schmidt number [11]

K ≡ 1/

∞∑

j=0

λ2
j (2)

The Schmidt number K is the quantum counterpart to the classical Pearson correlation
coefficient, and is an important entanglement measure [41,42] where large K indicates
high correlations and entanglement. K is also linked to another quantity known as the
purity P [12] via P = 1

K , and varies between zero and one. In the case of two particles,
P = Tr ρ2, where ρ is the density matrix of the examined particle.

For two identical particles, (fermions or bosons), the symmetrization postulate
constraints a boson (fermion) state associated with the system to be totally sym-
metric (antisymmetric) under permutation of the particles. As a consequence, the
Schmidt decomposition of the state involves more than one term, and a bipartite state
of two indistinguishable particles is generally considered entangled. This highlights
the importance of the Schmidt number in determining entanglement in quantum states
of identical particles [43]. B and B† obey the non-bosonic commutation relation,
[B, B†] = 1 + sΛ, where s = +1(−1) if the two interacting particles are bosons

(fermions), and Λ =
∞∑
j=0

λ j

(
a†

j a j + b†
j b j

)
. The state of N composite bosons appear

as

|N 〉 = 1√
χN

(
B†

)N

√
N ! |0〉, (3)

where deviations from the ideal boson characteristics are contained in the normaliza-
tion term χN obtained using 〈N |N 〉 = 1. The effectiveness of the operator B as a
bosonic annihilation operator can be seen via the action of operator B on state |N 〉
[11]
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B|N 〉 = αN
√

N |N − 1〉 + |FN 〉, (4)

where αN is a ideality parameter and |FN 〉 is the fragment state resulting from the

non-ideal nature of |N 〉. αN =
√

χN
χN−1

, which in the case of an ideal composite boson

yields the normalization ratio χN±1/χN → 1. This ratio is seen as a measure of the
degree of ideal bosonization for a state of N cobosons, and appears in the pair number
mean value corresponding to the state |N 〉 as

〈N̂ 〉 = 〈N |N̂ |N 〉
〈N |N 〉 =1+(N−1)

χN+1

χN
(5)

and also in the commutator mean [11],

〈N |[B, B†]|N 〉 = 2
χN+1

χN
− 1 (6)

A neat inequality involving the upper and a lower bound to the normalization ratio
was determined as 1 − P · N ≤ χN+1

χN
≤ 1 − P [12].

The fragment states, |FN 〉 remain orthogonal to |N − 1〉, yielding the correction
factor [11,39]

〈FN |FN 〉 = 1 − χN+1

χN
− N

(
χN

χN−1
− χN+1

χN

)
. (7)

The ratio χN+1/χN is strictly non-increasing as N increases [12], and for small bosonic
deviations such that χN+1/χN ≈ 1 − δ, the last term in Eq. (7) can be dropped,
〈FN |FN 〉 = δ and the commutator mean, 〈N |[B, B†]|N 〉 = 1 − 2δ. In the limits,
αN → 1, δ → 0, 〈FN |FN 〉 → 0. The formation of the fermionic fragment can be
compared to the formation of an electron-hole plasma when the density of a collection
of correlated electron-hole is increased, giving rise to an enhancement in fermionic
features. With increasing closeness of interacting paired fermions, the electron-holes
pairs become unbound as is the case when lattice temperature is increased. The state
of N composite bosons (see Eqs. (3)) with a well-defined atom number evolves into a
mixture of lower number states and fragment state |FN 〉, characterized by the fidelity
decay, γ . The role of γ is significant, due to its influence in a Zeno-like mechanism
where repeated measurements halts further decay of the composite boson states.

3 Alternative measures of deviations from ideal boson characteristics

Here we consider other measures that can be used in place of the purity P . An exper-
imentally accessible measure that can be used to capture deviations from ideal boson
characteristics is based on the (normalised) second order correlator g2 [8,44], which
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characterizes the probability of detecting of particles at times t and t + τ

g2(τ ) = 〈B†(t)B†(t + τ)B(t + τ)B(t)〉
〈N̂ (t)〉〈N̂ (t + τ)〉 (8)

g2(τ ) is based on correlations of the boson operators where N̂ is the number operator,
N̂ |n〉 = n|N 〉 associated with N fermion pairs. At zero delay,

g2(0) = 〈N0(t)(N0(t) − 1)〉
〈N 〉2 (9)

where 〈N0(t)〉 = 〈B†(t)B(t)〉. The second-order correlator provides information on
the underlying statistical features, such as the Poissonian case (g2(0) = 1) in coherent
systems involving a large number of Fock states, to the anti-bunching , sub-Poissonian
case (g2(0) < 1) applicable in the fermionic limit at high densities. The classically
accessible thermal states which display a bunched, super-Poissonian distribution result
in g2(0) > 1, we do not consider such states in the work here. A simple form of the zero-

delay τ = 0 correlations for the single-mode state, was obtained as g2(0) = α2
N−1α

2
N

N 2

[8], where αN = √
N

√
1 − 2(N − 1)( aB

L )2. The latter expression is applicable to

excitons of bohr radius aB in quantum dots of size L for small values of aB
L and

n 
 L
aB

. In the pure bosonic case, g2(0) = (N − 1)/N → 1 as N → ∞. The
fermionic structure of excitons becomes noticeable with decrease in g2(0), here we
estimate the bosonic deviations using δ = 1−g2(0). Results displayed on Fig. 1 show
the increase in the bosonic deviation measure δ with increase in number density (or
decrease in quantum dot size) as quantified by the ratio, aB

L . These results translates
to the growth of overlap in fragment states, 〈FN |FN 〉 = δ with increase in aB

L .
An alternative measure of the bosonic deviations is obtained using the degree of

binding of the paired fermions

αd = 1 − Ec

Eb
(10)

Fig. 1 Bosonic deviation
measure δ as function of fermion
pair number N in quantum dots
at varying ratios, L

aB
= 0.01

(Dark solid line), 0.03 (Blue),
0.05 (Red), 0.07 (Green) (Color
figure online)
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where Eb is the maximized binding energy of the composite boson, and Ec is the
smaller binding energy of the quasi-bound fermion pairs, which reaches zero for
free fermions. This definition is intimately linked to the distinguishability of paired
fermions, a system of many strongly bound fermion pairs is less distinguishable and
more entangled than one consisting of free fermion species. In the case of excitons
in semiconductors, at varying temperatures and densities, a mixed phase of bound
excitons and free electron-hole plasma is formed. In this case, the degree of ionization
of the electronhole plasma, αi = 1 − nb

n f
, is a suitable candidate for gauging the

bosonic deviations of the excitonic system. Here nb denotes the excitonic density
and n f denotes the density of the free electrons or holes at a given temperature and
density. The evaluation of αi involves carrier density parameters such as the chemical
potentials, temperature, band multiplicity, spin degeneracy and an integrand based on
the retarded Greens function of carriers [20].

Another quantity that provides a measure of deviations from ideal boson character-
istics is the N -particle non-escape probability in which N paired fermions are found
within the same region, 


PN (t) =
∫




N∏

n=1

drn|Ψ (r1, . . . , rN ; t)|2 (11)

The evolution dynamics of PN (t) can be examined further by considering the tensor
structure of PN (t) in Fock-Hilbert space, however this approach involves the incor-
poration of all degrees of freedom of the N -particle system. A related approach, but
one which involves few parameters is employed in Sect. 5 and applied to the case of
the excitonic bosons.

4 Open quantum system model and master equation for exciton-fermion system

We first examine the case of paired electron-hole or exciton interacting with a back-
ground of dissociated electrons and holes. The total Hamiltonian of the exciton and
fermion reservoir appear as

HT = He + H f + Hi + Hd , (12)

He =
∑

K

(Ec − μB)B†
K BK (13)

H f =
∑

ke

(εe − μe)a
†
ke

ake +
∑

kh

(εh − μh)h†
kh

hkh − γs

∑

k,k′
a†

k h†
−kh−k′ak′ (14)

Hi =
∑

ke,kh

σ ∗(ke, kh)a
†
ke

h†
−kh

Bke−kh
+ σ(ke, kh)B†

ke−kh
ake h−kh (15)

Hd = i
∑

ke,kh

γ ∗
N (ke, kh)B†

ke−kh
Bke−kh

(16)
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where the subscripts, e, f in the Hamiltonian terms refer, respectively to the exciton
and fermionic fragments, and subscript i in Eq. (13) is associated with the interac-
tion between the two subsystems. a†

k (h†
k) denote the electron (hole) creation opera-

tor with wavevector ke(kh) and kinetic energy εe(εh). The boson creation operator,
B†

K is labeled by the wavevector K and is obtained using the Fourier transform of

the site-dependent operator, B†
l as B†

K = N−1/2∑
l e

i K .l B†
l . Here the exciton cre-

ation operator B†
K which is localized in K -space, is delocalized in real space. Ec in

Eq. (13) is the minimum energy required to form the composite boson system. μe

and μh denote the respective chemical potentials for the electrons and holes, while
μB denotes the chemical potential of the bosonic system. γs denotes the strength of
electron-hole interactions which occurs within the fragment space, where we have
excluded the background plasma of electron-hole carriers that are originally formed
when excitons are created. σ in the interaction operator Hi [Eq. (15)] is the momen-
tum dependent coupling strength between two dissociated fermions and the correlated
fermion pair that constitutes the exciton. The non-Hermitian dissipative Hamiltonian
Hd [Eq. (16)] is dependent on the density dependent spontaneous decay γN (which we
specify as momentum dependent), and linked to Pauli exclusion processes, increasing
with greater deviations from ideal bosonic features. This Hamiltonian is associated
with the growth of the free fermion plasma state, or fragment state [see Eq. (7)],
resulting in the breakdown of boson states.

The density operator ρ of the quantum system associated with the total Hamiltonian,
HT [Eq. (12)] is obtained from the generalized Liouville-von Neumann equation
dρ
dt = −iLρ, where the generator L = Lb + Li + L f maps the initial to final density
operators via a Liouville superoperator Φ(t, 0): ρ(0) 
→ ρ(t) = Φ(t, 0)ρ(0). The
Liouville-von Neumann equation can be recast as a master equation of the following
Lindblad form [22,23] :

d

dt
ρ(t) = −i[Hb + Hi , ρ(t)] +

d∑

k=1

γk

(
Vkρ(t)V†

k − 1

2
{V†

k Vk, ρ(t)}
)

, (17)

where Vk denote Lindblad operators, in which both an operator and its hermitian
conjugate are labeled by k, and the decay terms, {γk} constitute the spectrum of the
positive definite d-dimensional Hermitian Gorini-Kossakowski-Sudarshan matrix A
[23]. The first term in Eq. (17) represents reversibility in system dynamics, while the
symmetrized Lindblad operators, Vk involve transitions between the many-particle
levels of both the composite boson and free fermionic background. The notations
associated with these possible energy transfer processes are suppressed in Eq. (17),
however these processes contribute to a range of dynamical time scales due to the
number of energetic degrees of freedom that can arise in the system. The multitude
of possible transitions that can occur only adds to the complexity of solving many
coupled differential equations of Eq. (17). The problem appears tractable in systems
with weak system-reservoir coupling when Markov approximation is valid or when a
system and its environment are initially correlated.
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4.1 Non-Markovian dynamics due to the fermionic background

During the initial period of quantum evolution, at times of the order of the fermion
bath memory time, non-Markovian dynamics dominates and the Lindblad form in
Eq. (17) breaks down. Several process may give rise to the non-Markovian dynamics.
The time-scales of processes which occur in ideal and composite bosons differ due
to decreased scattering between two elementary bosons as compared their composite
counterparts [45].

There also exist differences between ideal bosons and composite bosons in terms of
the decreased scattering via lattice vibrations in non-ideal boson systems due to phase
filling of the fermionic phase-space. The inclusion of the finite time scale present
in the vibrational environment of the background fermion sea may better reveal the
short time dynamics, and help examine the link between the non-Markovian nature
of the free fermion state and entanglement measures such as the Schmidt number
K and purity P of the parent composite boson state. A detailed analysis of Non-
Markovianian features will require the use of a non-Lindblad set of relations which
incorporate the finite time scale of the vibrational modes of the uncorrelated fermions.
In particular, the composite boson-fermion system incorporating non-Markovian may
provide a basis for accurate calculations of binding energies of complexes consisting of
several fermions such as excitonic complexes [46]. Further analysis of non-Markovian
process in the composite boson lies beyond the framework of this work, due to the
numerical complexities involved. To keep the problem tractable, we consider in the
next Section, the conversion of the composite boson state |N 〉 to the fermionic fragment
state |FN 〉 using a simple open quantum system consisting of a two-level system
interacting linearly with a dissociated electron-hole (fermion) reservoir. We note that
as the density (or lattice temperature) increases, the forward conversion of boson into
free fermions is favored due to screening of the Coulomb interaction that tends to bind
and form composite bosons. Hence, at higher densities, the interaction between the
boson-fermion background system is more likely to be Markovian.

5 Tensor structure of the many particle Fock-Hilbert space: N excitonic bosons

The tensor structure of the many particle Fock-Hilbert space for the system of N
correlated electron-hole or composite exciton state appear as

ST = Sb ⊗ S f (18)

where the total many particle Fock-Hilbert space ST is expressed as the tensor prod-
uct of two orthogonal subspaces. Here Sb(S f ) is the subspace associated with the
composite boson state |N 〉 (fragment state, |FN 〉), with both subspaces considered to
include the complete set of bound and unbound states, and combination thereof to
incorporate interactions present in a N-body system.

To keep the problem tractable, we assume that all N bosons possess the same
wavevector, K = K0, and consider that the subspace Sb is spanned by (|1〉b, |0〉b),
where |1〉b denotes the presence of N composite bosons with wavevector, K0, and
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|0〉b indicates a lower (N ′ < N ) number of bosons within Sb. In general, the Fock
space of composite boson and fermions allows for many complicated interactions,
coupled with the inseparability of the degrees of freedom of the boson system and
its fermionic background. The various correlations that occur between |N ′〉 and |N ′′〉
(N ′, N ′′ < N ) is implicit in the defined |0〉b, and hence we consider a collective state
that involves a superposition of similar states,

|0〉b =
∑

N ′<N

A(N ′)|N ′〉 (19)

A(N ′) is a weight factor that is dependent on the evolution dynamics of the coupled
boson-fermion system, and for simplification we ignore details of the possible inter-
actions between the different composite boson states, and focus instead on |1〉b. The
raising and lowering operators appear respectively, σ b+ = |1〉bb〈0| and σ b− = |0〉bb〈1|.
Due to the choice of definitions, a crude estimate of the energy difference between
|1〉b and |0〉b states is given by the binding energy of a single composite boson which
can be obtained via experiments in the case of excitonic systems.

Likewise, we also consider that S f is spanned by (|1〉 f , |0〉 f ) where |1〉 f (|0〉 f )

denotes the presence (absence) of the fragment state, |FN 〉. Instead of identifying
electron and hole states, we denote both types of fermions using operators c†

k , ck , and

the raising fermionic operator, σ
f

+ appear as linear combination of c†
k operators

σ
f

+ = |1〉 f f 〈0| = 1√
A

∑

k

jkc†
k (20)

which can be easily shown to obey the anti-commutator relation {σ f
− , σ

f
+} = 1, where

the lowering operator, σ f
− = |0〉 f f 〈1|. A = ∑

k γ 2
k , where jk is the weight amplitude

for the respective fermion in a simplified system of noninteracting fermions.
Using Feshbach projection-operator partitioning method [26], the total Hilbert

space of HT [Eq. (12)] is divided into two orthogonal subspaces, Sb and S f [see
Eq. (18)] generated respectively by a projection operator, P = σ b+σ b− and its com-

plementary, Q = σ
f

+σ
f

− , with Hence PQ = QP = 0, and the reduced density
state operator associated with the central composite boson system of interest is
obtained via

ρb = P ρT P, (21)

= Trf{ρT (t)} (22)

where ρT is the density operator of the total system described by HT . The reduced
density state, ρb can also be obtained by taking the partial trace over the fermionic
environment as shown in Eq. (22). The density operator associated with the fermionic
fragment can be obtained using ρ f (t) = Q ρT Q. If we consider that at time t0, the
subsystems of composite bosons and fermionic fragment are in separable states, the
evolution of ρb(t) in Laplace space becomes
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ρb(z) − [z − (Lb + N (z))]−1 (23)

where the energy term N (z) is associated with non-Markovian interactions. Fesh-
bach projection-operator partitioning has been employed in an earlier work [47], to
examine the dynamics of open quantum systems via the stochastic quantum trajectory
approach. While the stochastic route presents a physical interpretation of the quantum
trajectories in the case of Markovian dynamics, it offers no viable explanation for
the occurrence of non-Markovian dynamics, due to the finite correlation time of the
non-Markovian reservoir [48]. An alternative approach involving the post-Markovian
master equation [49,48] is known to be applicable in the regime between Markovian
and non-Markovian quantum dynamics in open quantum systems. Here we utilize the
Greens function approach [27,28] to provide an effective description of the quantum
evolution of the composite boson system.

6 Tunneling dynamics of composite bosons states: appearance of exceptional
points

We consider the tunneling dynamics between a pair of N -composite boson states |1〉b1
and |1〉b2 with a total Hamiltonian of the form (h̄ = 1)

HT = ωb1 σ b1+ σ b1− + ωb2 σ b2+ σ b2−
+V ∗ σ b1+ σ b2− + V σ b2+ σ b1− − iγd1σ

b1+ σ b1− − iγd2σ
b2+ σ b2− (24)

where ωbi (i = 1, 2) are the two composite boson transition energies [c.f. Eq. (13)]. V
denotes the tunneling energy between the two N -composite boson states, and is taken
to be real and positive, without loss in generality. Due to the choice of definitions
for |1〉b and |0〉b, the tunneling energy V could involve the transfer of excitation
associated with just one fermion pair. As will be described in Sect. 7, V may represent
a series of repeated processes leading to transfer of states from one site to another in
photosynthetic protein complexes. The dissipative terms in Eq. (24) represent leakages
of boson states into the fermionic subspaces, Sb → S f . The state |1〉b1(|1〉b2) decays
at the rate γd1(γd2) to the lower state |0〉b1(|0〉b2). The phenomenological rate γdi =
�i δi , is employed where δi = 〈FN |FN 〉 [see Eq. (7)] is a measure of the deviation
from bosonic features with increase in density of the composite boson state in a specific
subspace Sbi . �i is taken as a constant with units of energy.

We consider the retarded Green’s function of the form

G1,2(t) = −iΘ(t)〈{σ b1− (t), σ b2+ (0)}〉 (25)

where Θ(t) denotes a step function. The Fourier transform, G1,2(E) = ∫ ∞
−∞ dt

G1,2(t) ei Et for the system in Eq. (24) appear with the Lippmann-Schwinger matrix
terms [27]

G−1
1,2(E) =

[
E − ωb1 + iη+ −V

−V E − ωb2 + iη+
]

+ i

2

(
γd1 0
0 γd2

)
. (26)
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where η is a very small number and the dissipative process associated with γd1(γd2) in
the subspace Sb1(Sb2) is considered as an irreversible loss of the composite exciton of
size N . For an initial state in which no fermionic fragment is formed at time t = 0, and
one in which only the N -state composite boson state |1〉b1 is excited, we denote the
probability of excitation to remain at its initial site, P1,1(0) = 1. The probability P1,2
of excitation transfer from one boson subspace to another, Sb1 → Sb2 is determined
by inverting Eq. (26)

P1,2(t) = 2V 2

|Ω|2 e−γd t (cosh Ωi t − cos Ωr t), (27)

where γd = 1
2 (γd1 + γd2), Ω ≡ Ωr + iΩi ≡ √

4V 2 + (ω0 − i γ̄d)2, ω0 = ωb2 −
ωb1, γ̄d = 1

2 (γd2 − γd1). In the absence of the Pauli exclusion related dissipation at
time t > t ′, the boson-fermion system undergoes Rabi-type oscillation determined
by ω0 and V . In the continued presence of dissipative terms, the total probabilities,
P1,1 + P1,2 ≤ 1 is not conserved and there is loss of normalization which is dependent
on the dissipative terms, γd1, γd2.

Figure 2a, b shows the tunneling dynamics for the specific case when the energy
difference ω0 = 0. Depending on the tunneling energy V and decay rates �′, there is
existence of a coherent regime (2V > γ̄d ) or incoherent regime (2V < γ̄d ) between
the bosonic subspaces. At large V and small dissipation levels, there is increased
exchanges between the two coupled bosonic states (Fig. 2a). A gradual decrease in the
N -state boson population appears with increased deviation from ideal boson charac-
teristics due to increase in number density (or decrease in quantum dot size) as shown
in Fig. 2b.

The appearance of topological defects known as exceptional points [50] occurs
when Ω = 0, V = γ̄d

2 . Unlike degenerate points, only a single eigenfunction exists at
the exceptional point due to the merging of two eigenvalues. The critical boson densi-
ties and lattice temperatures at which exceptional points occur can be evaluated using
many body theory taking into account dynamical screening arising from Coulomb
interaction of the one-particle and two-particle properties between the same and dif-
ferent fermion species constituting the composite boson system. These special points
may be associated with a range of system parameter attributes, and hence lie within
an allowed spectrum that may be amenable to experimental detection.

The decay branching ratio is quantified by the fraction F1 (or F2) of a N -state com-
posite boson that decay via γd1 (or γd2). F2 is evaluated using Parseval’s theorem [51]

F2 = γd2

∞∫

−∞

d E

2π
|G1,2(E)|2, (28)

= (1 + γd2
γd1

)V 2

ω0
2 + γ 2

d (1 + 4V 2

γd2γd1
)
. (29)

The fraction F1 = 1− F2. Results displayed on Fig. 3a show the increase (decrease) in
the branching fraction F2 due to increase (increase) in the bosonic deviation measure
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Fig. 2 a Population difference, �P = P1,1 − P1,2 as a function of time t , and coupling energy, V at
dissipation rates γd1 = γd2 = 0.1, for the degenerate case (ωb2 = ωb1). The units are chosen such that
h̄ = 1,�1 = �2 = 1 (i.e δ1 = δ2 = 0.1). Time t is obtained as multiple of t0, the inverse of Ω0 (at
γd1 = γd2 = 0.1). b Population difference, �P = P1,1 − P1,2 as a function of time t , and deviation factor,
δ = δ2 at tunneling energy V = 1, γd1 = 0 and �2 = 1.

Fig. 3 a Branching fraction F2 of a N -state composite boson that decay via γd2 as a function of bosonic
deviations, δ1 and δ2. Energy difference ω0 = ωb2 − ωb1 = 0.5, and tunneling energy V = 1. The
units are chosen such that h̄ = 1,�1 = �2 = 1. b Fraction F2 as a function of energy difference ω0
and bosonic deviation, δ2. The tunneling energy V = 5 and δ1 = 0.1. The units are chosen such that
h̄ = 1,�1 = �2 = 1.

δ2 (δ1) for fixed values of the energy difference ω0 and tunneling energy V . Figure 3b
shows the notable decrease of the branching fraction F2 with increase in the energy
difference ω0. Conversely, the branching fraction F1 increases with increase in the
energy difference ω0, as expected.

7 Application to pigment protein complexes in light-harvesting systems

It is useful to analyze the results obtained in Sect. 6 in the context of large photo-
synthetic membranes which constitute many biological pigment-protein complexes
(i.e., chromophores) such as FMO (Fenna-Matthews-Olson) complexes in the green
sulphur bacteria [34,35]. The FMO complex trimer is made up of three symmetry
equivalent monomer subunits, with each unit constituting eight bacteriochlorophyll
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Fig. 4 a Simplified trimer configuration in which the eighth chromophore is positioned close to the first
chromophore of a neighbouring monomer, resulting in a stronger inter-monomer (as compared to intra-
monomer) interaction for an excitation at site 8 [53]. b A system of two coupled FMO trimer multichro-
mophoric macromolecules that is capable of displaying long-lived coherences for small bosonic deviations
of composite excitons at each trimer site

(BChl) a molecules supported by a cage of protein molecules. The FMO complex
acts as an efficient channel of excitation transfer in which photons captured in the
chlorosome which is the main light harvesting antenna complex, are directed via a
series of excitonic exchanges to a reaction center (RC) where energy conversion into a
chemical form occurs. Long-lived coherences between electronic states lasting several
picoseconds, much shorter than the 1 ns dissipative lifetimes of excitons [35], have
been a topic of intense investigation in recent years [36–38,52]. Currently it is still
not clear as to how biological systems comprising hundreds of photosynthetic com-
plexes and many more correlated excitonic states act in unison to maintain the quantum
coherences in the noisy environment, and attain the much envied high efficiencies at
psychological temperatures.

In the FMO complex, the chromophore sites numbered 3 and 4 are located near the
reaction center, and thus are closely linked to the sink region where energy is released,
while chromophore sites 1 and 2 are strongly coupled, and dissipate energy via site 3
[34]. The sites 1, 6, and 8 are located at the baseplate which connects to the chlorosomes
that receive electronic excitation. Recently, it was shown that the eighth chromophore
(at site 8) is located nearer the chromophore sites of neighbouring monomers compared
to sites in its own monomer [53]. This indicates a stronger inter-monomer (as compared
to intra-monomer) interaction as far as the eighth chromophore is concerned and the
excitation at site 8 is likely to propagate to a inter-site monomer (see Fig. 4a ). It
was pointed out [53] that the eigth chromophore acts to facilitate excitation transfer
between monomers of the FMO trimer even though it is best placed to receive excitation
at the earliest time. To this end, the eighth chromophore appears to play a critical role
in the topological connectivity of large molecular structures of multichromophoric
macromolecule (MCMM) systems. The electro-optical properties of these MCMMs
vary from those of single chromophores, depending on the delocalization of excitons
within each MCMM.

Here we apply Eq. (26) to a model in which excitons in MCMMs undergo tunneling
dynamics over distances that are large compared to the average distance between
chromophores within the FMO monomer/trimer configurations [55]. A simple setup
is shown in Fig. 4b, where 1 < N < Nm = 24, and which describes the system of
composite bosons in one FMO trimer that is considered as the multichromophoric
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macromolecule. Individual MCMM can be coupled to each other as is shown for two
FMO trimers in Fig. 4b. Dissipation may arise from Pauli exchanges between the FMO
pigments and the protein bath, and recombination and trapping effects specific to each
macromolecular system. The configuration Fig. 4b can be further extended to one in
which each MCMM includes several trimers forming aggregates. The net dissipation
within each MCMM may vary from other similarly configured MCMM, depending on
the connectivity and proximity to the region of light illumination. In a recent work [54],
multiple detrapping/retrapping processes as opposed to the slow (200 ps) direct transfer
between RCs in the purple bacterium Rhodobacter sphaeroides [54] were noted to
contribute to the delocalization of excitation among several reaction centres (RCs). In
this regard, the tunneling energy V in Eq. (26) may be based on a cumulative process
of repeated trapping/detrapping events instead of a single direct transfer mechanism.

Oscillations between MCMMs are expected as shown in Fig. 2a, b, with excitation
exchanges that gradually fades with time depending on the initial conditions, dissi-
pation parameters, γd1, γd2 (specific to the two MCMM sites) and average energy
difference (≈ω0) between the MCMM sites. As noted earlier, coherence times are
much shorter than the dissipative lifetimes of excitons [35]. Of specific interest is use
of the branching ratio in Eq. (29) which identifies effective routes of energy propa-
gation in large topologically connected network structures. A single antenna complex
may serve several FMO complexes, and a reaction center may be linked to several
FMO trimers. Specific MCMM sites which function as collection centers, experience
greater dissipation than other sites, possess higher branching ratios (Fig. 3a, b), and
contribute to a structural arrangement that enable photosynthetic organisms to better
utilize cellular resources.

Continued coherence in photosynthetic complexes is ensured by a small bosonic
deviation measure δ and large number N of fermion pairs involved during energy
exchanges (Fig. 2). This suggest that a molecular environment that is highly corre-
lated, with a large Schmidt number K Eq. (2) is likely to preserve electronic coherences
needed for propagation of excitation such that energy is harvested efficiently. The spec-
tral and molecular dynamics of MCMM at various lattice temperatures and excitation
densities (light illumination), which influence the kinetics of exciton and electron-
hole pair recombination and relaxation processes, are critical factors that influence
the Schmidt number K specific to a MCMM. Thus far, we have considered a few
factors which underpins the high efficiencies noted in light-harvesting systems, on
qualitative terms. A quantitative approach would involve modeling the realistic con-
dition of an entire photosynthetic membrane constituting many FMO complexes, and
taking into account the topological connectivity of thousands of bacteriochorophylls.
The approach taken in this work is expected to help understand the importance of
the coexistence af boson and fermionic phases, Pauli scattering effects and selective
dissipation in photosynthetic systems.

8 Conclusion

In conclusion, the quantum dynamics of conversion of composite bosons into fermi-
onic fragment species is demonstrated using an open quantum system approach based
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on a system-plus-reservoir model. The total Hilbert space which constitutes a com-
posite boson subspace and an orthogonal fragment subspace of fermions pairs is used
to examine the effect of system parameters during the tunneling dynamics of coupled
composite bosons states. The results highlight the interplay of boson and fermionic
phases that is dependent on density (network connectivity) and lattice temperature,
and the appearance of exceptional points based on experimentally testable conditions
(densities, lattice temperatures). The effect of Pauli exclusion and other dissipative
factors on the multichromophoric macromolecules (MCMMs) in photosynthetic light
harvesting is examined in the light of quantitative results obtained for coupled com-
posite bosons systems. It is noted that long-lived quantum coherence in photosynthetic
complexes are assisted by small bosonic deviation measures (large Schmidt number)
and large number of excitons involved during energy exchanges, to give rise to a highly
correlated molecular environment. Moreover, specific MCMM sites which function
as collection centers may possess higher branching ratios, and contribute to a struc-
tural arrangement that enable photosynthetic organisms to better harness solar energy
efficiently.
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